

Análisis Modal de Emisiones Vehiculares

Manual de usuario AMEV

Plataforma de estimación de emisiones contaminantes para vehículos pesados

Medellín, Diciembre 2020

Contenido

Introducción	2
¿Cuál es la utilidad de AMEV?	2
Metodología AMEV	4
Estructura de la plataforma	11
Encabezado y Banner	12
Panel de configuración	12
Modal de subida de datos	13
Panel de resultados	14
Ruta	15
Dinámica	16
Emisiones	17
Desconexiones GPS	18
Uso de la plataforma	19
Configurar prueba	20
Subida de datos GPS	20
Interpretación de resultados	23
Ruta y desconexiones del GPS	23
Dinámica	25
Emisiones	29

Introducción

Este manual de usuario es una guía práctica que presenta el uso del aplicativo AMEV. Además, ilustra de forma sencilla la metodología de Análisis modal de Emisiones Contaminantes usada en el proyecto FEVA II.

¿Cuál es la utilidad de AMEV?

AMEV es un aplicativo que se enfoca en estimar factores de emisión. Se desarrolló con los resultados de los modelos de emisiones creados en el proyecto FEVA II (Factores de Emisión del Valle de Aburrá para vehículos pesados)

Actualmente, el aplicativo abarca 10 posibles vehículos distribuidos en tres categorías vehiculares. Estos modelos se construyeron con información obtenida en una campaña intensiva de medición en el año 2018. Adicionalmente, se cuenta con un mapa de elevación digital desarrollado por la NASA.

Cotogoría	Vahíaula		Características				
Calegona	veniculo	Modelo	Tecnología	Cilindraje	Capacidad		
	B1	2003	Pre - Euro	4570 cc	28 pasajeros		
	B2	2009	Euro II	7560 cc	37 pasajeros		
	В3	2016	Euro IV	5193 cc	19 pasajeros		
	B4	2016	Euro IV	5193 cc	42 pasajeros		
	CP1	2006	Pre - Euro	2771 cc	2.65 ton		
	CP2	2016	Euro IV	2999 cc	2.45 ton		
	CG1	1993	Pre - Euro 6000 co		10 ton		
	CG2	2017	Euro V	6992 cc	10 ton		
	V1	1995	Pre - Euro	6000 cc	10 ton		
100	V2	2018	Euro IV	7790 cc	10 ton		

Metodología AMEV

Esta metodología se estudia desde hace varias décadas y representa un tema de investigación actual a nivel internacional. A continuación, se presenta la metodología recopilada de diversos estudios para el desarrollo de los modelos de emisiones que usa AMEV.

Para desarrollar un modelo de emisiones con esta metodología, es fundamental conocer cómo se mueve una categoría vehicular de interés en la ciudad. Una vez se compacta la forma de conducir de una categoría vehicular en un patrón (perfil de velocidad vs. tiempo), se procede a realizar mediciones a bordo con equipos PEMS. Se registran variables dinámicas y emisiones contaminantes para una gama de vehículos representativos de la categoría vehicular.

Estos datos pasan a una etapa procesamiento de datos y posteriormente a una etapa de cálculo de descriptores dinámicos (como la potencia específica vehicular - VSP y el estrés del motor - ES) y finalmente pasa a la etapa final llamada "binning", también conocida como agrupamiento donde se agrupan las emisiones en función de la dinámica del vehículo.

La VSP, es una de las variables más importantes que describen la dinámica del vehículo. Para estimar la VSP, es necesario obtener de forma confiable la velocidad y la pendiente de la vía. Es por esto que la señal de velocidad sufre ciertos procesos para poder tener un comportamiento suave y representativo de la movilidad del vehículo.

La aceleración del vehículo se calcula a través del perfil de velocidad mediante un método numérico de derivación. La pendiente de la vía se obtuvo tomando segmentos de distancia fija de 140 metros. Para cada segmento, se tomaron los datos de elevación y distancia recorrida y se ajustó un modelo de regresión lineal donde la pendiente de este modelo corresponde a la pendiente de la vía. En la siguiente figura se presenta con más detalle esta técnica usada a nivel Página 6

En la figura anterior, se consideró un segmento de 500 metros. Se ajustó una línea recta a los datos arrojando una pendiente de 7.5%. Esta misma técnica se utilizó para los diferentes segmentos que salen en una ruta.

Luego de obtener los parámetros dinámicos necesarios para el proceso de binning, se definen 10 posibles modos de conducción en función de la velocidad, la aceleración y la pendiente de la vía. Estos modos de conducción se identifican como:

EB - Emisiones Bajas

- S Subida, L Llano, B Bajada
- A Aceleración, C Crucero y D Deceleración.

Después de depurar los datos de emisiones en estos 10 modos de conducción, se procede a realizar una separación de los datos en subgrupos dentro de cada modo de conducción. Cada subgrupo es representativo y posee una emisión característica como se muestra en las siguientes figuras, donde se presenta el agrupamiento final para el CO, CO₂, HC y PM.

Estos grupos son el resultado del modelo y se obtienen para cada uno de los vehículos representativos de la región.

Para estimar la masa emitida de un vehículo en una ruta de interés basta con determinar el número de datos que queda en cada uno de los grupos. (Figura superior). Finalmente, con los grupos obtenidos por el modelo, se procede a multiplicar grupo a grupo la cantidad de datos con el valor de emisión

característico de cada grupo (Figura del medio). Esto arroja un nuevo gráfico donde el eje x representa cada uno de los grupos y el eje y representa la masa emitida en cada grupo (Figura inferior). Al sumar las masas obtenidas en los grupos, se obtiene la masa total de la prueba.

El modelo se validó bajo el esquema mostrado en la figura anterior. Durante la campaña de medición, se guardan datos para validar el modelo. Con estos datos se estimó el factor de emisión con el modelo y se obtuvo el factor de emisión real. El comparativo indica que los errores son aceptables y en casi todos los casos los intervalos de confianza se cruzan indicando que los valores estimados y reales son muy cercanos en la escala de medición.

Estructura de la plataforma

La plataforma es un DashBoard hecho en Python 3 con tres componentes principales: Elementos de ayuda, panel de configuración y panel de resultados.

- Logging
- Encabezado y Banner
- Panel de configuración
- Modal de subida de datos
- Panel de resultados

Encabezado y Banner

Permite al usuario conocer más sobre la metodología usada para estimar los factores de emisión. También presenta una ayuda en el uso del aplicativo y la interpretación de los resultados.

Panel de configuración

El panel de configuración permite al usuario subir datos, seleccionar el vehículo de interés para estimar factores de emisión (es importante seleccionar un vehículo parecido al cual se le hicieron mediciones con GPS) y definir observaciones y nombres durante la exportación de los

resultados.

configuración		
Importar archivo con datos GPS	Identificador de prueba Nombre del archivo para exportar resultados	Observaciones Conclusiones generales en los resultados
Importar	Nombre	
Categoría vehícular	Características de	el vehículo
Buses	× - B1: 2003 preEuro	4570 cc 28 pasajeros × 👻
	Vehículo: Modelo Tecn	ología Euro Cilindraje Capacidad de Carga

Modal de subida de datos

Cargue de información

Seleccione cuales columnas se usarán para calcular descriptores dinámicos. Son importantes la Latitud, Longitud y Altitud

Seleccione columnas

🗌 type 🗌 date time	< latitude	🕑 longitude 🗌	accuracy(m)	< altitude	
geoid_height(m)	speed(m/s)	bearing(deg) 🗌 sat_used	sat_inview	name
desc					

id	latitude	longitude	altitude
0	6.28104963	-75.57998576	1581.9589999999996
1	6.28218418	-75.58136085	1599.052
2	6.28221171	-75.58139298	1599.982000000002
3	6.28223428	-75.58141949	1601.98
4	6.28224899	-75.58143753	1602.854
5	6.28225895	-75.58145105	1603.523
6	6.28225884	-75.58145564	1603.588
7	6.28225667	-75.58145429	1603.703
8	6.28225486	-75.58145390000001	1604.1529999999998
9	6.28225449	-75.58145464	1604.801000000004
10	6.28225314	-75.58145432	1605.178
11	6.2822527	-75.58145281	1605.063
12	6.28225335	-75.58145315	1605.464
12	6 20225250	75 5914540	1606

Al dar click en el boton Continuar, se procede a visualizar la ruta y mostrar los resultados de las estimaciones. Para descartar la prueba, dar click en Cerrar

 Diagnóstico de los datos:
 Cálculo de descriptores dinámicos:

 Operación Exitosa
 Operación Exitosa

 Continuar

Este modal permite importar los datos GPS y realizar el proceso de estimación de los factores de emisión. Presenta una tabla con la información que será usada para estimar. El botón continuar es el que inicia el proceso de estimación.

Panel de resultados

El panel de resultados se compone de cuatro ventanas, cada una brinda información diferente sobre la calidad de los datos GPS, la dinámica de la ruta y los resultados de emisiones en las respectivas unidades de interés. La interpretación de los resultados se presenta más adelante.

Este panel presenta:

- La ruta por la cual transitó el vehículo
- La dinámica de la ruta
- Los resultados de emisiones
- Desconexiones del GPS

Ruta

Se visualiza en un mapa la ruta que el vehículo siguió durante las mediciones GPS. Adicionalmente, presenta dos perfiles de elevación de la vía: el que entrega el GPS y el obtenido con el mapa de elevación digital de la NASA.

Dinámica

Los perfiles temporales de la velocidad y la aceleración del vehículo, la distancia recorrida, la pendiente de la vía por donde se transitó y la potencia específica vehicular para dos mapas de elevación.

La gráfica de la pendiente se puede visualizar en función del tiempo o en función de la distancia. Se presenta la pendiente obtenida con el mapa de elevación digital de la NASA y los datos GPS.

La gráfica de la potencia específica vehicular (PEV) se presenta para los dos tipos de datos GPS que se tienen.

Emisiones

Presenta los resultados generales de la prueba (distancia recorrida, tiempo, velocidad promedio) y los factores de emisión de CO, CO₂, NOx, HC, PM.

Mapa de la ruta	Dinámica de la	a ruta	Resulta	dos de emisiones	Anomalías en datos GP	
Distancia recorrida: 9.32 Km	Velocaidad promedio: 1	17.36 Km/h	Duración de la	a prueba: 32.22 min	Porc %	entaje de prueba estimada: 100
Emisión	Mapa de elevación	Vari	able	Valor		IC 95%
со	GPS	Factor Emisión [g/km]		km] 4.464		4.074 - 4.855
CO2	GPS	Factor Emi	sión [g/km]	755.518		702.138 - 808.897
HC	GPS	Factor Emi	sión [g/km]	0.552		0.535 - 0.57
NOx	GPS	Factor Emisión [g/km]		3.555		3.366 - 3.745
PM	GPS	Factor Emisión [g/km]		2.348		1.518 - 3.177
CO	GPS	Factor Emisión [g/km ton]		0		0.0 - 0.001
CO2	GPS Factor Emisión [g/km ton] 0.079			0.073 - 0.084		
нс	GPS	Factor Emisio	on [g/km ton]	0		0.0 - 0.0
NOx	GPS	Factor Emisio	in [g/km ton]	0		0.0 - 0.0
PM	GPS	Factor Emisio	isión [g/km ton] 0			0.0 - 0.0
CO	SRTM	Factor Emi:	r Emisión [g/km] 4.22			3.842 - 4.598
C02	SRTM	Factor Emi	sión [g/km]	705.149		656.686 - 753.612
HC	SRTM	Factor Emi:	Emisión [g/km] 0.53			0.514 - 0.545
NOx	SRTM	Factor Emisión [g/km]		3.384		3.205 - 3.563
PM	SRTM	Factor Emi:	sión [g/km]	2.135		1.365 - 2.905
CO	SRTM	Factor Emisio	in [g/km ton]	0		0.0 - 0.0
C02	SRTM	Factor Emisio	in [g/km ton]	0.073		0.068 - 0.079
нс	SRTM	Factor Emisio	in [g/km ton]	0		0.0 - 0.0
NOx	SRTM	Factor Emisio	in [g/km ton]	0		0.0 - 0.0
PM	SRTM	Factor Emisio	in [g/km ton]	0		0.0 - 0.0

Desconexiones GPS

Presenta una tabla con un resumen sobre las desconexiones del GPS a lo largo de toda la prueba. Incluye: las coordenadas antes y después de la desconexión, la distancia de desconexión y las velocidades asociadas a estas coordenadas.

Mapa de la	Mapa de la ruta Dinámica de la ruta Resultados de emisiones Anomalías en datos GPS								
Seleccio anomaía	Seleccione las columnas que quiere visualizar en la tabla de anomaías								
Tiempo [s]	Distancia [m]	Velocidad A [km/h]	Velocidad B [km/h]	Latitud A	Longitud B	Latitud B	Longitud A		
334	52.52	27.0769999999999998	16.799	6.25635262	-75.58180597	6.25655015	-75.58137451		
	334 52.52 27.0769999999999998 16.799 6.25635262 -75.58180597 6.25655015 -75.58137451								

Uso de la plataforma

En esta sección, se presenta una guía rápida de estimación de ruta adquirida en la ciudad de Medellín el 05 de Noviembre de 2020. La ruta se adjunta en el archivo <u>prueba.txt</u> con un video donde se reproduce esta guía.

Configurar prueba

Importar archivo con datos GPS	Identificador de prueba Nombre del archivo para exportar resultados	Observaciones Conclusiones generales en los resultados
Importar	Nombre	
Categoría vehícular	Características de	ł vehículo
Categoría vehícular Buses	Características de × - B1: 2003 preEuro	ł vehículo 4570 cc 28 pasajeros ×

En el panel de configuración se encuentran cinco objetos que permiten configurar la ruta. Para empezar, hay que seleccionar la categoría vehicular y el vehículo de interés. Posteriormente se procede a cargar los datos de GPS de la prueba.

Estos datos se pueden obtener con el aplicativo Android GPSLogger. Con este aplicativo para dispositivos móviles, se puede obtener información GPS segundo a segundo. Esta información se puede exportar en diversos formatos (.txt, .csv, .xlsx) para analizarse en otro tipo de sistemas o plataformas.

Subida de datos GPS

Una vez se tiene un archivo .csv o .txt, y se seleccionen las características del vehículo, se procede con el cargue de los

datos a AMEV. Para esto, es necesario dar clic en la palabra "Importar" que abre una ventana para seleccionar un archivo desde el ordenador. Posteriormente, se abrirá un modal con un panel de configuración para subir los datos al sistema.

Cargue de información		Cargue de informaci	ón		
Seleccione cuales columnas se usarán p Longitud y Altitud	ara calcular descriptores dinámicos. Son importantes la Latitud,	Seleccione cuales colum Longitud y Altitud	nas se usarán para calc	ular descriptores dinámic	os. Son importantes la Latitud,
Seleccione columnas		Seleccione columnas			
	de Oliverstade Oliverser (m). Oliverse	🗌 tuma 🔲 data	timo 🔽 latitudo 🗖	langituda 🗌 aaguragu/u	m) 🗖 altituda
geoid_height(m) speed(m desc	ae longitude accuracy(m) altitude n/s) bearing(deg) sat_used sat_inview name	geoid_height(n desc	n) speed(m/s)	bearing(deg) sat_us	sed sat_inview name
	id	id	latitude	longitude	altitude
	0	0	6.28104963	-75.57998576	1581.9589999999996
	1	1	6.28218418	-75.58136085	1599.052
	2	2	6.28221171	-75.58139298	1599.982000000002
	3	3	6.28223428	-75.58141949	1601.98
	4	4	6.28224899	-75.58143753	1602.854
	5	5	6.28225895	-75.58145105	1603.523
	6	6	6.28225884	-75.58145564	1603.588
	7	7	6.28225667	-75.58145429	1603.703
	2	8	6.28225486	-75.58145390000001	1604.152999999998
	0	9	6.28225449	-75.58145464	1604.801000000004
	9	10	6.28225314	-75.58145432	1605.178
	10	11	6.2822527	-75.58145281	1605.063
	12	12	6.28225335	-75.58145315	1605.464
	12	19	< 10115150	76 6014643	1606
Al dar click en el boton Continuar, se pro estimaciones. Para descartar la prueba,	cede a visualizar la ruta y mostrar los resultados de las dar click en Cerrar	Al dar click en el boton C estimaciones. Para desca Diagnóstico de los	continuar, se procede a v artar la prueba, dar click datos:	visualizar la ruta y mostra c en Cerrar Cálculo de descriptores	r los resultados de las s dinámicos:
Diagnostico de los datos:	Calculo de descriptores dinamicos:	Operación Exitosa		Operación Exitosa	
	Continuar Cerrar				Continuar Cerrar

En este modal, el aplicativo muestra las columnas que contiene el archivo que se cargó y solicita al usuario seleccionar aquellas que poseen información de posicionamiento geográfico (longitud, latitud, altitud). Sin estos datos, el sistema no puede estimar los factores de emisión. Una vez seleccionadas las columnas, el usuario debe dar clic en Continuar. Si todo se ejecutó de forma correcta, el aplicativo entrega un mensaje de "Operación exitosa", de lo

contrario, entrega un mensaje de "Operación Fallida".

- Si se tiene el mensaje "Operación Fallida" indica que el sistema no puede estimar la ruta. Esto se debe a dos razones: No se tienen las columnas necesarias ó el archivo presenta muchas discontinuidades debido a las desconexiones del GPS.
- Si se tiene el mensaje "Operación exitosa" el sistema estimó los factores de emisión para CO, CO₂, NOx, HC, PM. En este caso, ya se tienen los resultados para interpretarlos.

En el primer caso, la prueba no puede ser estimada con AMEV y requiere algún tipo de depuraciones. Es por esto que se recomienda adquirir estos datos de posicionamiento geográfico con GPS robustos y de buena calidad. Aunque los smartphones poseen un GPS integrado, no todos poseen uno con unas características adecuadas para adquirir este tipo de datos con la resolución y calidad necesaria.

Interpretación de resultados

La siguiente ruta fue obtenida durante el mes de Noviembre del presente año con la aplicación GPSLogger. Se cuenta con información segundo a segundo del posicionamiento GPS de un bus de servicio público.

Ruta y desconexiones del GPS

Esta ruta inició cerca de la estación Suramericana y llegó hasta Robledo Cordona, bordeando todo el Cerro El Volador. Esta ruta se hizo con un bus de servicio público de aproximadamente 40 pasajeros por lo que el más similar dentro de los posibles buses es el B4.

La ruta siguió un perfil de elevación ascendente, debido a que desde una zona llana se dirigía hacia Robledo que es una zona alta. Además, se observa el desfase que poseen los datos de elevación. Esta variabilidad entre la elevación afecta

drásticamente las estimaciones hechas por el modelo debido a lo sensible que es en el cálculo la pendiente y la potencia específica vehicular.

En la ruta, se evidencia una desconexión del GPS llegando a la calle 50 por toda la carrera 65 hasta cercanías del Cerro el Volador. Esta desconexión fue de 53 metros aproximadamente y representa el 21% de la prueba. Es por esto, que esta prueba se estima con un 79% de los datos.

x Tiempo [s] x Velocidad A [km/h] x Velocidad B [km/h]						
Tiempo [s]	Distancia [m]	Velocidad A [km/h]	Velocidad B [km/h]			
334	52.52	27.07699999999998	16.799			

Dinámica

El perfil de velocidad se presenta a continuación. Este perfil fue calculado a través de los datos de latitud y longitud. Adicionalmente se aplicaron técnicas estadísticas y matemáticas para suavizar la señal de modo que se obtenga una aceleración en rangos reales (entre -2 y 2 m/s²).

La figura evidencia que la velocidad promedio fue de aproximadamente 20 km/h con diversos eventos de aceleración. En los segundos 110, 205, 300 y 600 aproximadamente se evidencian eventos de aceleración desde un ralentí.

Mientras que a lo largo del tiempo, se observa un segundo tipo de evento de aceleración, este no parte del ralentí. Este segundo evento ocurre cuando el vehículo está en movimiento y acelera repentinamente.

Mientras que a lo largo del tiempo, se observa un segundo tipo de evento de aceleración, este no parte del ralentí. Este segundo evento ocurre cuando el vehículo está en movimiento y acelera repentinamente.

En total el recorrido comprende 4.5 kilómetros con un perfil de pendiente variable como se muestran en las siguientes figuras. La pendiente posee una gran variabilidad al compararla para diferentes datos de elevación obtenidos por Página 26

diferentes medios.

Pendiente vs Tiempo Pendiente vs Distancia

Estas variaciones en el perfil de pendiente se debe a la Página 27

incertidumbre que tienen los GPS para dar información de elevación. Estos sensores son excelentes para obtener de forma confiable la posición latitud vs. longitud, sin embargo, poseen limitantes para obtener confiablemente la elevación de la vía. En la figura encontramos segmentos que poseen una diferencia de aproximadamente el 15% en la pendiente de la vía. Esta diferencia es considerable en el cálculo de la VSP y por ende en la estimación de factores de emisiones.

En la figura siguiente, se presenta un comparativo de la VSP obtenida con los datos dados por el GPS y los datos obtenidos mediante la NASA. Se observan diferencias

considerables cercanas a los 250 segundos y al finalizar la ruta.

Emisiones

La ruta duró aproximadamente 15 minutos recorriendo en total 4.35 kilómetros. Debido a la desconexión, la prueba se estimó con un 79% de los datos. Los factores de emisión se presentan de dos formas, en gramos por kilómetro [g/km] y en gramos por kilómetro por tonelada [g/km.ton].

Análisis Modal de Emisiones Vehiculares

Emisión	Mapa de elevación	Variable	Valor	IC 95%
со	GPS	Factor Emisión [g/km]	5.592	4.708 - 6.476
CO2	GPS	Factor Emisión [g/km]	1125.703	1034.631 - 1216.775
HC	GPS	Factor Emisión [g/km]	0.342	0.323 - 0.362
NOx	GPS	Factor Emisión [g/km]	4.68	4.271 - 5.088
PM	GPS	Factor Emisión [g/km]	1.588	0.914 - 2.262
со	GPS	Factor Emisión [g/km ton]	0.001	0.0 - 0.001
CO2	GPS	Factor Emisión [g/km ton]	0.117	0.108 - 0.127
HC	GPS	Factor Emisión [g/km ton]	0	0.0 - 0.0
NOx	GPS	Factor Emisión [g/km ton]	0	0.0 - 0.001
PM	GPS	Factor Emisión [g/km ton]	0	0.0 - 0.0
со	SRTM	Factor Emisión [g/km]	6.837	5.788 - 7.886
CO2	SRTM	Factor Emisión [g/km]	1390.018	1271.596 - 1508.441
HC	SRTM	Factor Emisión [g/km]	0.423	0.398 - 0.448
NOx	SRTM	Factor Emisión [g/km]	5.313	4.815 - 5.81
PM	SRTM	Factor Emisión [g/km]	1.801	0.967 - 2.635
со	SRTM	Factor Emisión [g/km ton]	0.001	0.001 - 0.001
CO2	SRTM	Factor Emisión [g/km ton]	0.145	0.132 - 0.157
нс	SRTM	Factor Emisión [g/km ton]	0	0.0 - 0.0
NOx	SRTM	Factor Emisión [g/km ton]	0.001	0.001 - 0.001
PM	SRTM	Factor Emisión [g/km ton]	0	0.0 - 0.0

Para el CO se tiene un factor de emisión de 5.59 g/km usando los datos de elevación que suministra el GPS. Mientras que este factor de emisión aumenta a 6.84 g/km si se usan los datos obtenidos por la NASA. Son más confiables los datos suministrados por la NASA, sin embargo, es importante tener ambos valores para tomar decisiones y definir planes de acción.

Para todos las emisiones, se evidencia un aumento del factor de emisión cuando se trabajan con los datos obtenidos por la NASA. Estas diferencias son para el CO del 18.2%, para el CO₂ del 19%, para los HC es del 19.1%, para los NOx es del 11.9% y para el PM es del 11.78%.

Adicionalmente, los factores de emisión se presentan con un intervalo de confianza del 95%. Es decir, el modelo entrega un

valor representativo del factor de emisión y presentan un intervalo para el mismo. Para el CO, se tiene un factor de emisión entre [4.708 - 6.476] g/km con un valor representativo de 5.592 g/km. Entre más pequeño sea el intervalo, más preciso es el modelo para estimar este factor de emisión.